3.5.10 \(\int \frac {(a+a \sec (c+d x))^{3/2}}{\cos ^{\frac {3}{2}}(c+d x)} \, dx\) [410]

3.5.10.1 Optimal result
3.5.10.2 Mathematica [A] (verified)
3.5.10.3 Rubi [A] (verified)
3.5.10.4 Maple [A] (verified)
3.5.10.5 Fricas [A] (verification not implemented)
3.5.10.6 Sympy [F]
3.5.10.7 Maxima [B] (verification not implemented)
3.5.10.8 Giac [F]
3.5.10.9 Mupad [F(-1)]

3.5.10.1 Optimal result

Integrand size = 25, antiderivative size = 140 \[ \int \frac {(a+a \sec (c+d x))^{3/2}}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\frac {7 a^{3/2} \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{4 d}+\frac {a^2 \sin (c+d x)}{2 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}}+\frac {7 a^2 \sin (c+d x)}{4 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}} \]

output
7/4*a^(3/2)*arcsinh(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))*cos(d*x+c)^ 
(1/2)*sec(d*x+c)^(1/2)/d+1/2*a^2*sin(d*x+c)/d/cos(d*x+c)^(5/2)/(a+a*sec(d* 
x+c))^(1/2)+7/4*a^2*sin(d*x+c)/d/cos(d*x+c)^(3/2)/(a+a*sec(d*x+c))^(1/2)
 
3.5.10.2 Mathematica [A] (verified)

Time = 0.37 (sec) , antiderivative size = 107, normalized size of antiderivative = 0.76 \[ \int \frac {(a+a \sec (c+d x))^{3/2}}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\frac {a^2 \left ((2+7 \cos (c+d x)) \sqrt {1-\sec (c+d x)}+\frac {7 \arcsin \left (\sqrt {1-\sec (c+d x)}\right )}{\sec ^{\frac {3}{2}}(c+d x)}\right ) \sin (c+d x)}{4 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {1-\sec (c+d x)} \sqrt {a (1+\sec (c+d x))}} \]

input
Integrate[(a + a*Sec[c + d*x])^(3/2)/Cos[c + d*x]^(3/2),x]
 
output
(a^2*((2 + 7*Cos[c + d*x])*Sqrt[1 - Sec[c + d*x]] + (7*ArcSin[Sqrt[1 - Sec 
[c + d*x]]])/Sec[c + d*x]^(3/2))*Sin[c + d*x])/(4*d*Cos[c + d*x]^(5/2)*Sqr 
t[1 - Sec[c + d*x]]*Sqrt[a*(1 + Sec[c + d*x])])
 
3.5.10.3 Rubi [A] (verified)

Time = 0.68 (sec) , antiderivative size = 139, normalized size of antiderivative = 0.99, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.400, Rules used = {3042, 4752, 3042, 4301, 27, 3042, 4290, 3042, 4288, 222}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a \sec (c+d x)+a)^{3/2}}{\cos ^{\frac {3}{2}}(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^{3/2}}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx\)

\(\Big \downarrow \) 4752

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sec ^{\frac {3}{2}}(c+d x) (\sec (c+d x) a+a)^{3/2}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \csc \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (\csc \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^{3/2}dx\)

\(\Big \downarrow \) 4301

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{2} a \int \frac {7}{2} \sec ^{\frac {3}{2}}(c+d x) \sqrt {\sec (c+d x) a+a}dx+\frac {a^2 \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {7}{4} a \int \sec ^{\frac {3}{2}}(c+d x) \sqrt {\sec (c+d x) a+a}dx+\frac {a^2 \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {7}{4} a \int \csc \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}dx+\frac {a^2 \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}\right )\)

\(\Big \downarrow \) 4290

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {7}{4} a \left (\frac {1}{2} \int \sqrt {\sec (c+d x)} \sqrt {\sec (c+d x) a+a}dx+\frac {a \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}\right )+\frac {a^2 \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {7}{4} a \left (\frac {1}{2} \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}dx+\frac {a \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}\right )+\frac {a^2 \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}\right )\)

\(\Big \downarrow \) 4288

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {7}{4} a \left (\frac {a \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}-\frac {\int \frac {1}{\sqrt {\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+1}}d\left (-\frac {a \tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{d}\right )+\frac {a^2 \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}\right )\)

\(\Big \downarrow \) 222

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {a^2 \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}+\frac {7}{4} a \left (\frac {\sqrt {a} \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}+\frac {a \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}\right )\right )\)

input
Int[(a + a*Sec[c + d*x])^(3/2)/Cos[c + d*x]^(3/2),x]
 
output
Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*((a^2*Sec[c + d*x]^(5/2)*Sin[c + d*x 
])/(2*d*Sqrt[a + a*Sec[c + d*x]]) + (7*a*((Sqrt[a]*ArcSinh[(Sqrt[a]*Tan[c 
+ d*x])/Sqrt[a + a*Sec[c + d*x]]])/d + (a*Sec[c + d*x]^(3/2)*Sin[c + d*x]) 
/(d*Sqrt[a + a*Sec[c + d*x]])))/4)
 

3.5.10.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 222
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[Rt[b, 2]*(x/Sqrt 
[a])]/Rt[b, 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && PosQ[b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4288
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
+ (a_)], x_Symbol] :> Simp[-2*(a/(b*f))*Sqrt[a*(d/b)]   Subst[Int[1/Sqrt[1 
+ x^2/a], x], x, b*(Cot[e + f*x]/Sqrt[a + b*Csc[e + f*x]])], x] /; FreeQ[{a 
, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[a*(d/b), 0]
 

rule 4290
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
 + (a_)], x_Symbol] :> Simp[-2*b*d*Cot[e + f*x]*((d*Csc[e + f*x])^(n - 1)/( 
f*(2*n - 1)*Sqrt[a + b*Csc[e + f*x]])), x] + Simp[2*a*d*((n - 1)/(b*(2*n - 
1)))   Int[Sqrt[a + b*Csc[e + f*x]]*(d*Csc[e + f*x])^(n - 1), x], x] /; Fre 
eQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[n, 1] && IntegerQ[2*n]
 

rule 4301
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_), x_Symbol] :> Simp[(-b^2)*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 
2)*((d*Csc[e + f*x])^n/(f*(m + n - 1))), x] + Simp[b/(m + n - 1)   Int[(a + 
 b*Csc[e + f*x])^(m - 2)*(d*Csc[e + f*x])^n*(b*(m + 2*n - 1) + a*(3*m + 2*n 
 - 4)*Csc[e + f*x]), x], x] /; FreeQ[{a, b, d, e, f, n}, x] && EqQ[a^2 - b^ 
2, 0] && GtQ[m, 1] && NeQ[m + n - 1, 0] && IntegerQ[2*m]
 

rule 4752
Int[(u_)*((c_.)*sin[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Simp[(c*Csc[a 
+ b*x])^m*(c*Sin[a + b*x])^m   Int[ActivateTrig[u]/(c*Csc[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[u, x 
]
 
3.5.10.4 Maple [A] (verified)

Time = 2.11 (sec) , antiderivative size = 206, normalized size of antiderivative = 1.47

method result size
default \(\frac {a \left (14 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}\, \sin \left (d x +c \right ) \cos \left (d x +c \right )-7 \cos \left (d x +c \right )^{2} \arctan \left (\frac {-\cos \left (d x +c \right )+\sin \left (d x +c \right )-1}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right )-7 \arctan \left (\frac {\cos \left (d x +c \right )+\sin \left (d x +c \right )+1}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \cos \left (d x +c \right )^{2}+4 \sin \left (d x +c \right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}\right ) \sqrt {a \left (1+\sec \left (d x +c \right )\right )}}{8 d \left (\cos \left (d x +c \right )+1\right ) \cos \left (d x +c \right )^{\frac {3}{2}} \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\) \(206\)

input
int((a+a*sec(d*x+c))^(3/2)/cos(d*x+c)^(3/2),x,method=_RETURNVERBOSE)
 
output
1/8/d*a*(14*(-1/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)*cos(d*x+c)-7*cos(d*x+c)^2 
*arctan(1/2*(-cos(d*x+c)+sin(d*x+c)-1)/(cos(d*x+c)+1)/(-1/(cos(d*x+c)+1))^ 
(1/2))-7*arctan(1/2*(cos(d*x+c)+sin(d*x+c)+1)/(cos(d*x+c)+1)/(-1/(cos(d*x+ 
c)+1))^(1/2))*cos(d*x+c)^2+4*sin(d*x+c)*(-1/(cos(d*x+c)+1))^(1/2))*(a*(1+s 
ec(d*x+c)))^(1/2)/(cos(d*x+c)+1)/cos(d*x+c)^(3/2)/(-1/(cos(d*x+c)+1))^(1/2 
)
 
3.5.10.5 Fricas [A] (verification not implemented)

Time = 0.29 (sec) , antiderivative size = 369, normalized size of antiderivative = 2.64 \[ \int \frac {(a+a \sec (c+d x))^{3/2}}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\left [\frac {4 \, {\left (7 \, a \cos \left (d x + c\right ) + 2 \, a\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) + 7 \, {\left (a \cos \left (d x + c\right )^{3} + a \cos \left (d x + c\right )^{2}\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 4 \, \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} {\left (\cos \left (d x + c\right ) - 2\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 7 \, a \cos \left (d x + c\right )^{2} + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right )}{16 \, {\left (d \cos \left (d x + c\right )^{3} + d \cos \left (d x + c\right )^{2}\right )}}, \frac {2 \, {\left (7 \, a \cos \left (d x + c\right ) + 2 \, a\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) + 7 \, {\left (a \cos \left (d x + c\right )^{3} + a \cos \left (d x + c\right )^{2}\right )} \sqrt {-a} \arctan \left (\frac {2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{a \cos \left (d x + c\right )^{2} - a \cos \left (d x + c\right ) - 2 \, a}\right )}{8 \, {\left (d \cos \left (d x + c\right )^{3} + d \cos \left (d x + c\right )^{2}\right )}}\right ] \]

input
integrate((a+a*sec(d*x+c))^(3/2)/cos(d*x+c)^(3/2),x, algorithm="fricas")
 
output
[1/16*(4*(7*a*cos(d*x + c) + 2*a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))* 
sqrt(cos(d*x + c))*sin(d*x + c) + 7*(a*cos(d*x + c)^3 + a*cos(d*x + c)^2)* 
sqrt(a)*log((a*cos(d*x + c)^3 - 4*sqrt(a)*sqrt((a*cos(d*x + c) + a)/cos(d* 
x + c))*(cos(d*x + c) - 2)*sqrt(cos(d*x + c))*sin(d*x + c) - 7*a*cos(d*x + 
 c)^2 + 8*a)/(cos(d*x + c)^3 + cos(d*x + c)^2)))/(d*cos(d*x + c)^3 + d*cos 
(d*x + c)^2), 1/8*(2*(7*a*cos(d*x + c) + 2*a)*sqrt((a*cos(d*x + c) + a)/co 
s(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c) + 7*(a*cos(d*x + c)^3 + a*cos( 
d*x + c)^2)*sqrt(-a)*arctan(2*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + 
 c))*sqrt(cos(d*x + c))*sin(d*x + c)/(a*cos(d*x + c)^2 - a*cos(d*x + c) - 
2*a)))/(d*cos(d*x + c)^3 + d*cos(d*x + c)^2)]
 
3.5.10.6 Sympy [F]

\[ \int \frac {(a+a \sec (c+d x))^{3/2}}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\int \frac {\left (a \left (\sec {\left (c + d x \right )} + 1\right )\right )^{\frac {3}{2}}}{\cos ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx \]

input
integrate((a+a*sec(d*x+c))**(3/2)/cos(d*x+c)**(3/2),x)
 
output
Integral((a*(sec(c + d*x) + 1))**(3/2)/cos(c + d*x)**(3/2), x)
 
3.5.10.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 2244 vs. \(2 (116) = 232\).

Time = 0.48 (sec) , antiderivative size = 2244, normalized size of antiderivative = 16.03 \[ \int \frac {(a+a \sec (c+d x))^{3/2}}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\text {Too large to display} \]

input
integrate((a+a*sec(d*x+c))^(3/2)/cos(d*x+c)^(3/2),x, algorithm="maxima")
 
output
-1/16*(56*sqrt(2)*a*cos(7/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/ 
2*c)))*sin(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) - 24*s 
qrt(2)*a*cos(5/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))*sin( 
4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) - 12*sqrt(2)*a*si 
n(3/2*d*x + 3/2*c) + 28*sqrt(2)*a*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), co 
s(3/2*d*x + 3/2*c))) - 4*(3*sqrt(2)*a*sin(3/2*d*x + 3/2*c) + 7*sqrt(2)*a*s 
in(7/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) - 3*sqrt(2)*a* 
sin(5/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) - 7*sqrt(2)*a 
*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))))*cos(8/3*arc 
tan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) - 8*(3*sqrt(2)*a*sin(3/2 
*d*x + 3/2*c) - 7*sqrt(2)*a*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2* 
d*x + 3/2*c))))*cos(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c) 
)) - 7*(a*cos(8/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 
 4*a*cos(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + a*si 
n(8/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 4*a*sin(8/3 
*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))*sin(4/3*arctan2(sin( 
3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 4*a*sin(4/3*arctan2(sin(3/2*d*x 
 + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*(2*a*cos(4/3*arctan2(sin(3/2*d*x + 
 3/2*c), cos(3/2*d*x + 3/2*c))) + a)*cos(8/3*arctan2(sin(3/2*d*x + 3/2*c), 
 cos(3/2*d*x + 3/2*c))) + 4*a*cos(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos...
 
3.5.10.8 Giac [F]

\[ \int \frac {(a+a \sec (c+d x))^{3/2}}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {{\left (a \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}}}{\cos \left (d x + c\right )^{\frac {3}{2}}} \,d x } \]

input
integrate((a+a*sec(d*x+c))^(3/2)/cos(d*x+c)^(3/2),x, algorithm="giac")
 
output
sage0*x
 
3.5.10.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(a+a \sec (c+d x))^{3/2}}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\int \frac {{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{3/2}}{{\cos \left (c+d\,x\right )}^{3/2}} \,d x \]

input
int((a + a/cos(c + d*x))^(3/2)/cos(c + d*x)^(3/2),x)
 
output
int((a + a/cos(c + d*x))^(3/2)/cos(c + d*x)^(3/2), x)